

Review Paper:

Green-Synthesized Nanoparticles of *Catharanthus roseus*: A Review of Synthesis, Characterization and Biomedical Applications

Sudhir P.K.¹, Venkatesan Hariram² and Vettrivel Arul^{2*}

1. Vinayaka Mission's Research Foundation - Deemed to be University, Salem, Tamil Nadu, INDIA

2. Vinayaka Mission's Homoeopathic Medical College and Hospital, Salem, Tamil Nadu, INDIA

*veldoc4565@gmail.com

Abstract

Catharanthus roseus, a medicinal plant rich in bioactive compounds like alkaloids, flavonoids and terpenoids, has gained prominence in green nanoparticle synthesis. This review highlights its role as a reducing and stabilizing agent in the eco-friendly production of nanoparticles such as silver (AgNPs), gold (AuNPs), zinc oxide (ZnO-NPs) and iron oxide (Fe₂O₃-NPs). Characterization techniques including UV-Vis spectroscopy, FTIR and SEM, confirm their stability and functionality. These nanoparticles demonstrate significant biomedical applications including antimicrobial, antioxidant, anticancer and anti-inflammatory activities.

AgNPs and ZnO-NPs exhibit strong pathogen disruption and oxidative stress reduction while AuNPs show targeted cytotoxicity against cancer cells. Challenges such as scalability and reproducibility persist, but interdisciplinary research and clinical validation can unlock their full potential. This review underscores the promise of *C. roseus*-derived nanoparticles in sustainable nanotechnology for health and environmental solutions.

Keywords: Anticancer, Antioxidant, *Catharanthus roseus*, Nanoparticles, Phytochemicals.

Introduction

Nanotechnology has revolutionized multiple fields including medicine, agriculture and materials science due to its ability to manipulate materials at the nanoscale.³⁸ Nanoparticles (NPs), measuring 1–100 nm, are the cornerstone of this technology, offering unique properties such as high surface area and tuneable physical and chemical characteristics.⁵⁹ However, conventional NP synthesis methods, chemical and physical, pose significant limitations including high energy requirements, toxic reagents and environmental hazards.³ These drawbacks necessitate the development of sustainable alternatives like green synthesis, which leverages biological resources to produce NPs in an eco-friendly and cost-effective manner.¹³ Green synthesis has gained prominence as a viable alternative to traditional approaches. It utilizes natural reducing and stabilizing agents from biological systems including plants, fungi, bacteria and algae. Unlike chemical methods that rely on hazardous chemicals, green

synthesis is environmentally benign and biocompatible, producing NPs with enhanced functional properties.⁴⁰ Plant-mediated synthesis, in particular, is highly advantageous due to the abundance of phytochemicals such as phenolics, flavonoids, alkaloids and terpenoids. These secondary metabolites not only facilitate NP formation but also confer intrinsic biological activities, making them highly relevant for biomedical applications.⁶⁰

Among the various plants utilized, *Catharanthus roseus* (Madagascar periwinkle) stands out for its phytochemical richness and medicinal significance. Belonging to the Apocynaceae family, *C. roseus* is a known source of terpenoid indole alkaloids like vincristine and vinblastine, which are extensively used in cancer therapy.²² Additionally, the plant contains phenolics, flavonoids and tannins, which act as efficient reducing and capping agents in NP synthesis. These bioactive compounds impart stability and functionality to the synthesized NPs, enhancing their biomedical potential for applications such as anticancer, antimicrobial and antioxidant therapies.⁹

The widespread availability and adaptability of *C. roseus* make it a sustainable choice for green NP synthesis. Its ability to stabilize nanoparticles ensures high yield and stability, addressing critical challenges in NP production.⁴¹ This review explores the synthesis, characterization and biomedical applications of *C. roseus*-derived NPs, highlighting the plant's dual role as a reducing and capping agent. By integrating green chemistry and nanotechnology, *C. roseus* exemplifies the advancements in eco-friendly NP synthesis and its potential to address pressing challenges in medicine and beyond.

Synthesis of Nanoparticles using *Catharanthus roseus*

The use of *Catharanthus roseus* in nanoparticle synthesis represents a sustainable and eco-friendly approach, leveraging the plant's abundant phytochemicals to produce diverse nanoparticles.³⁷ The process begins with the preparation of plant extracts, typically using aqueous or ethanolic methods. For aqueous extraction, fresh or dried plant material is boiled in distilled water, facilitating the release of bioactive compounds such as alkaloids, flavonoids and terpenoids.¹⁴ Ethanol extraction, on the other hand, enhances the solubility of a broader range of secondary metabolites, allowing for the efficient recovery of bioactive constituents. The extracts are filtered to remove plant debris,

creating a solution rich in phytochemicals that serve as reducing and stabilizing agents.

The phytochemicals in *Catharanthus roseus* play a dual role in nanoparticle synthesis. Compounds like flavonoids, tannins and phenolic acids reduce metal salts to their respective nanoparticles by donating electrons during the redox reaction.⁵³ For instance, silver nitrate (AgNO_3) is reduced to silver nanoparticles (AgNPs), while gold chloride (HAuCl_4) is reduced to gold nanoparticles (AuNPs). In addition to reduction, these bioactive compounds stabilize the nanoparticles by capping their surfaces, which prevent aggregation and ensures uniform size distribution. This stabilization is attributed to the functional groups, such as hydroxyl and carboxyl groups, present in the phytochemicals, which interact with the nanoparticle surfaces.⁶⁴

Different types of nanoparticles have been synthesized using *Catharanthus roseus*. AgNPs exhibit potent antimicrobial and antioxidant activities, making them suitable for biomedical and environmental applications.³¹ AuNPs are valued for their use in cancer therapy, bioimaging and drug delivery due to their biocompatibility and tunable surface properties.¹² Zinc oxide nanoparticles (ZnO-NPs) demonstrate strong antibacterial, antifungal and photocatalytic properties, making them useful in wastewater treatment and antibacterial coatings.^{2,56} Iron oxide nanoparticles (Fe_2O_3 -NPs) are extensively studied for their applications in magnetic resonance imaging, targeted drug delivery and hyperthermia therapy.⁴² The synthesis process is optimized by controlling parameters such as pH, temperature, metal salt concentration and reaction time.

Optimal conditions ensure high yield, narrow size distribution and enhanced stability of the nanoparticles.^{44,63} For example, slightly alkaline pH and moderate temperatures (around 50–70°C) are often ideal for nanoparticle formation.⁴⁷ Thus, the utilization of *Catharanthus roseus* not only underscores the potential of green nanotechnology but also provides a cost-effective and sustainable pathway for synthesizing functional nanoparticles.

Characterization of Synthesized Nanoparticles from *Catharanthus roseus*: Nanoparticles synthesized using *Catharanthus roseus* extracts including silver (AgNPs), gold (AuNPs), zinc oxide (ZnO-NPs) and iron oxide (Fe_2O_3 -NPs), exhibit diverse properties and applications. Characterization of these nanoparticles is essential for confirming synthesis, analysing structural and morphological features and assessing stability and biocompatibility. Advanced analytical techniques provide detailed insights into their properties.¹⁶ UV-Vis spectroscopy is a primary tool used to monitor nanoparticle synthesis. Silver nanoparticles exhibit a characteristic surface plasmon resonance (SPR) peak in the range of 400–450 nm while gold nanoparticles show SPR peaks around 520–570 nm.^{8,36}

These optical features provide information about nanoparticle size and aggregation.

Zinc oxide nanoparticles absorb strongly in the UV range of 300–380 nm due to their wide bandgap while iron oxide nanoparticles display unique absorption features associated with electronic transitions of iron ions, confirming their synthesis.⁴ These spectral properties also highlight the effectiveness of phytochemicals in the nanoparticle synthesis process. Fourier-transform infrared (FTIR) spectroscopy plays a pivotal role in identifying functional groups in *Catharanthus roseus* extracts responsible for reducing and stabilizing nanoparticles.²⁹ Peaks corresponding to hydroxyl (-OH), carbonyl (-C=O) and carboxyl (-COOH) groups confirm the involvement of phytochemicals such as alkaloids, flavonoids and terpenoids.⁶¹ These biomolecules not only reduce metal ions to their respective nanoparticles but also form a capping layer, ensuring colloidal stability.⁵²

For ZnO-NPs and Fe_2O_3 -NPs, FTIR analysis further validates the presence of metal-oxygen bonds, indicative of successful nanoparticle formation. X-ray diffraction (XRD) analysis provides information about the crystalline nature of nanoparticles. The face-centered cubic (FCC) structure is observed for both silver and gold nanoparticles, while zinc oxide nanoparticles display a hexagonal wurtzite pattern and iron oxide nanoparticles exhibit characteristic peaks of their spinel structure. The average crystallite size is determined using the Debye-Scherrer equation, providing quantitative data on nanoparticle dimensions and confirming their crystalline integrity.⁶

Microscopy techniques like Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) are indispensable for understanding the morphology of nanoparticles.¹⁵ SEM reveals surface characteristics and shapes, such as spherical structures for AgNPs and AuNPs, rod-like configurations for ZnO-NPs and cubic morphologies for Fe_2O_3 -NPs.¹ TEM offers high-resolution imaging, enabling precise measurement of nanoparticle size and observation of uniformity.⁵⁵ Additionally, TEM can reveal the phytochemical capping layer, demonstrating the stabilization provided by *Catharanthus roseus* extracts. Dynamic light scattering (DLS) complements TEM by providing information on the hydrodynamic size and zeta potential of nanoparticles.⁴⁵

The hydrodynamic sizes are typically larger than TEM-measured sizes due to solvation layers. High zeta potential values, often above ± 30 mV, indicate strong electrostatic stabilization, ensuring colloidal stability. For iron oxide nanoparticles, magnetic properties are also assessed to confirm their potential for applications like drug delivery and magnetic imaging. The stability and biocompatibility of nanoparticles synthesized using *Catharanthus roseus* extracts are primarily attributed to the phytochemical content.³¹ Compounds such as flavonoids, alkaloids and

terpenoids act as natural capping agents, preventing aggregation and oxidative degradation. This natural coating enhances the antimicrobial and anticancer efficacy of AgNPs and AuNPs respectively, improves the photocatalytic activity of ZnO-NPs and supports the biocompatibility of Fe₂O₃-NPs, making them suitable for biomedical applications.⁷

Characterization of nanoparticles synthesized from *Catharanthus roseus* ensures a thorough understanding of their optical, structural and morphological features. These analyses validate their potential for diverse applications including antimicrobial treatments, cancer therapy, photocatalysis and targeted drug delivery. The role of phytochemicals in stabilization and biocompatibility further enhances their utility, marking these nanoparticles as versatile agents in biomedical and environmental sciences.

Biomedical Applications of *Catharanthus roseus* derived Nanoparticles: The antimicrobial activity of *Catharanthus roseus* derived nanoparticles, particularly silver (AgNPs) and zinc oxide nanoparticles (ZnO-NPs), has been extensively documented. These nanoparticles exhibit broad-spectrum efficacy against pathogenic bacteria, fungi and viruses. Studies reveal potent antibacterial activity against Gram-positive bacteria like *Staphylococcus aureus* and Gram-negative strains such as *Escherichia coli* and *Pseudomonas aeruginosa*.^{9,30} The mechanism primarily involves the disruption of bacterial cell membranes, leading to leakage of cellular contents and eventual cell death. AgNPs also generate reactive oxygen species (ROS), further amplifying their bactericidal effects.³⁹

Against fungal pathogens like *Candida albicans* and *Aspergillus niger*, nanoparticles disrupt fungal hyphae and inhibit spore germination.²⁷ Moreover, *Catharanthus roseus* derived AgNPs and AuNPs have shown antiviral properties, inhibiting the replication of viruses such as herpes simplex virus (HSV) and influenza.^{21,46} This is achieved by binding to viral envelope proteins, thereby preventing viral entry into host cells. The antioxidant potential of *Catharanthus roseus*-mediated nanoparticles is another significant attribute. These nanoparticles effectively combat oxidative stress by scavenging free radicals and reducing the levels of reactive oxygen species.¹⁸

For instance, gold nanoparticles (AuNPs) synthesized from *Catharanthus roseus* extract have demonstrated robust antioxidant activity in DPPH and ABTS assays, with IC₅₀ values indicating high radical-scavenging efficiency.²⁰ Zinc oxide nanoparticles also show notable antioxidant capabilities, attributed to their interaction with reactive species and stabilization by plant-derived phytochemicals like flavonoids and alkaloids.⁵ This antioxidant activity has profound implications in preventing cellular damage caused by oxidative stress, thereby reducing the risk of chronic diseases such as cardiovascular disorders and neurodegenerative conditions.²⁶ One of the most promising

applications of *Catharanthus roseus* derived nanoparticles is their anticancer activity. Silver and gold nanoparticles exhibit potent cytotoxic effects against various cancer cell lines including lung (A549) and (HeLa229) cancers.^{23,28} The mechanisms involve multiple pathways, such as the induction of apoptosis, generation of reactive oxygen species and disruption of mitochondrial membrane potential. Studies have demonstrated that these nanoparticles upregulate pro-apoptotic proteins like Bax and downregulate anti-apoptotic proteins such as Bcl-2, triggering programmed cell death.¹⁷ Additionally, nanoparticles enhance the production of ROS within cancer cells, leading to oxidative damage and cell cycle arrest.

The selective toxicity of these nanoparticles towards cancer cells while sparing normal cells underscores their potential as effective and biocompatible anticancer agents.²⁵ The anti-inflammatory properties of *Catharanthus roseus*-mediated nanoparticles further enhance their biomedical relevance. These nanoparticles mitigate inflammation by downregulating pro-inflammatory cytokines such as TNF- α , IL-6 and IL-1 β and upregulating anti-inflammatory markers like IL-10.⁴³ Zinc oxide and iron oxide nanoparticles synthesized using *Catharanthus roseus* extracts have been shown to reduce inflammation in animal models of arthritis and colitis.⁵⁸ The anti-inflammatory effects are attributed to the suppression of NF- κ B signalling pathways, which play a critical role in the inflammatory response. This makes these nanoparticles valuable in managing inflammatory diseases and associated conditions.²⁴

Beyond these primary biomedical applications, *Catharanthus roseus* derived nanoparticles find utility in drug delivery, imaging and environmental remediation. Gold and iron oxide nanoparticles have been extensively studied as drug delivery vehicles, capable of targeting specific tissues and releasing therapeutic agents in a controlled manner. For example, AuNPs functionalized with tumour-specific ligands have demonstrated effective delivery of chemotherapeutic drugs to cancer cells, minimizing off-target effects.⁶² Magnetic iron oxide nanoparticles (Fe₂O₃-NPs) synthesized from *Catharanthus roseus* are used in magnetic resonance imaging (MRI), offering enhanced contrast for better visualization of pathological conditions.⁴² Furthermore, the photocatalytic activity of zinc oxide nanoparticles has been harnessed for environmental remediation, such as the degradation of organic pollutants in wastewater.

Challenges and Future Perspectives

The green synthesis of nanoparticles using *Catharanthus roseus* and other plant-based systems has garnered significant attention due to its eco-friendliness, cost-effectiveness and biocompatibility. However, several challenges persist, limiting its large-scale application and clinical translation. Addressing these limitations while leveraging future opportunities is critical for advancing this field. One of the primary challenges in green synthesis is

scalability. While laboratory-scale synthesis methods have been extensively optimized, replicating these processes on an industrial scale remains difficult.⁵⁴

Variations in the phytochemical composition of plant extracts, influenced by factors such as plant age, geographical location and seasonal changes, often result in inconsistencies in nanoparticle characteristics such as size, shape and stability. This lack of uniformity is particularly problematic for biomedical applications where strict regulatory standards demand reproducibility and consistency.³³ Moreover, green synthesis methods typically yield nanoparticles in smaller quantities compared to conventional chemical or physical methods, necessitating the development of techniques that can increase production volumes without compromising the quality and eco-friendly nature of the process.¹⁰

Reproducibility is another significant limitation. The inherent complexity of plant-based extracts, which often contain a mixture of bioactive compounds such as flavonoids, alkaloids and phenolics, poses challenges in standardizing the synthesis process.⁵⁷ Each bioactive compound can influence the reduction and stabilization of metal salts differently, making it difficult to achieve a predictable and reproducible outcome. In addition, reaction parameters such as pH, temperature and extract concentration require precise control and even minor deviations can lead to significant variations in nanoparticle properties.¹¹ Despite these challenges, the future of green synthesis holds immense promise. Interdisciplinary approaches combining nanotechnology, biochemistry and computational modelling could pave the way for more robust and efficient synthesis methods.³

For example, integrating omics technologies such as metabolomics and proteomics, can help to identify the specific phytochemicals responsible for nanoparticle synthesis and their precise mechanisms of action. This knowledge can be used to engineer plant extracts or mimic their bioactive components for more controlled and reproducible synthesis.¹⁹ Exploring novel applications of *Catharanthus roseus* derived nanoparticles is another promising direction. While current research predominantly focuses on antimicrobial, antioxidant, anticancer and anti-inflammatory properties, these nanoparticles have untapped potential in areas like regenerative medicine, biosensing and advanced drug delivery systems.

Developing hybrid nanoparticles, where plant-derived nanoparticles are combined with synthetic materials, could further enhance their functionality and expand their application spectrum.³² Conducting preclinical and clinical trials is essential for translating these nanoparticles from the laboratory to real-world applications. Rigorous *in vivo* studies are required to evaluate their pharmacokinetics, toxicity and therapeutic efficacy in human models.³⁴ Regulatory pathways for green-synthesized nanoparticles

must also be streamlined to address the unique challenges associated with their complexity and variability. Collaboration between academia, industry and regulatory agencies will be critical in overcoming these challenges.⁴⁸ Industry partnerships can facilitate the development of scalable synthesis technologies, while regulatory agencies can provide guidelines for standardization and approval. Public and private funding will also be vital to support large-scale studies and commercialization efforts.³⁵

Conclusion

The synthesis of nanoparticles using *Catharanthus roseus* represents a promising, sustainable and versatile approach in nanotechnology, combining the rich phytochemical diversity of this medicinal plant with cutting-edge advancements in material science. These nanoparticles exhibit remarkable biological properties including antimicrobial, antioxidant, anticancer and anti-inflammatory activities, underscoring their potential for diverse biomedical applications.

Despite the significant progress achieved in understanding their synthesis mechanisms, characterization techniques and applications, challenges such as scalability, reproducibility and clinical translation remain key hurdles. To fully harness the potential of *Catharanthus roseus*-derived nanoparticles, interdisciplinary collaborations are essential for optimizing green synthesis methods and addressing these limitations. Furthermore, expanding their applications into emerging fields such as regenerative medicine, targeted drug delivery and environmental remediation can provide transformative solutions to global health and environmental challenges.

Rigorous preclinical and clinical evaluations will play a pivotal role in ensuring the safety, efficacy and standardization of these nanomaterials for practical applications. *Catharanthus roseus* mediated nanoparticles can become a cornerstone in sustainable nanotechnology, bridging traditional knowledge with modern science to improve health outcomes and contribute to a more eco-friendly future.

References

1. Abbas R., Luo J., Qi X., Naz A., Khan I.A., Liu H., Yu S. and Wei J., Silver Nanoparticles: Synthesis, Structure, Properties and Applications, *Nanomaterials*, **14**(17), 1425, <https://doi.org/10.3390/nano14171425> (2024)
2. Abou Zeid S., Perez A., Bastide S., Le Pivert M., Rossano S., Remita H., Hautière N. and Leprince-Wang Y., Antibacterial and Photocatalytic Properties of ZnO Nanostructure Decorated Coatings, *Coatings*, **14**(1), 41, <https://doi.org/10.3390/coatings14010041> (2024)
3. Ahmed S.F., Mofijur M., Rafa N., Chowdhury A.T., Chowdhury S., Nahrin M., Islam A.B.M.S. and Ong H.C., Green Approaches in Synthesising Nanomaterials for Environmental Nano bioremediation: Technological Advancements, Applications, Benefits and Challenges, *Environmental Research*, **204**, 111967, <https://doi.org/10.1016/j.envres.2021.111967> (2022)

4. Ahammed K.R., Ashaduzzaman Md., Paul S.C., Nath M.R., Bhowmik S., Saha O., Rahaman Md. M., Bhowmik S. and Aka T.D., Microwave Assisted Synthesis of Zinc Oxide (ZnO) Nanoparticles in a Noble Approach: Utilization for Antibacterial and Photocatalytic Activity, *SN Appl. Sci.*, **2(5)**, 955, <https://doi.org/10.1007/s42452-020-2762-8> (2020)

5. Al-darwesh M.Y., Ibrahim S.S. and Mohammed M.A., A Review on Plant Extract Mediated Green Synthesis of Zinc Oxide Nanoparticles and Their Biomedical Applications, *Results in Chemistry*, **7**, <https://doi.org/10.1016/j.rechem.2024.101368>, 101368 (2024)

6. Ali Md. H., Azad Md. A.K., Khan K.A., Rahman Md. O., Chakma U. and Kumer A., Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques, *ACS Omega*, **8(31)**, 28133–28142, <https://doi.org/10.1021/acsomega.3c01261> (2023)

7. Alshameri A.W. and Owais M., Antibacterial and Cytotoxic Potency of the Plant-Mediated Synthesis of Metallic Nanoparticles Ag NPs and ZnO NPs: A Review, *Open Nano*, **8**, 100077, <https://doi.org/10.1016/j.onano.2022.100077> (2022)

8. Alzoubi F.Y., Ahmad A.A., Aljarrah I.A., Migdadi A.B. and Al-Bataineh Q.M., Localize Surface Plasmon Resonance of Silver Nanoparticles Using Mie Theory, *J Mater Sci: Mater Electron*, **34(32)**, 2128, <https://doi.org/10.1007/s10854-023-11304-x> (2023)

9. Balkrishna A., Thakur N., Patial B., Sharma S., Kumar A., Arya V. and Amarowicz R., Synthesis, Characterization and Antibacterial Efficacy of Catharanthus Roseus and Ocimum Tenuiflorum-Mediated Silver Nanoparticles: Phyto nanotechnology in Disease Management, *Processes*, **11(5)**, 1479, <https://doi.org/10.3390/pr11051479> (2023)

10. Banjara R.A., Kumar A., Aneshwari R.K., Satnami M.L. and Sinha S.K., A Comparative Analysis of Chemical vs Green Synthesis of Nanoparticles and Their Various Applications, *Environmental Nanotechnology, Monitoring & Management*, **22**, 100988, <https://doi.org/10.1016/j.enmm.2024.100988> (2024)

11. Bhadange Y.A., Carpenter J. and Saharan V.K., A Comprehensive Review on Advanced Extraction Techniques for Retrieving Bioactive Components from Natural Sources, *ACS Omega*, **9(29)**, <https://doi.org/10.1021/acsomega.4c02718>, 31274–31297 (2024)

12. Bharadwaj K.K., Rabha B., Pati S., Sarkar T., Choudhury B.K., Barman A., Bhattacharjya D., Srivastava A., Baishya D., Edinur H.A., Abdul Kari Z. and Mohd Noor N.H., Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics, *Molecules*, **26(21)**, 6389, <https://doi.org/10.3390/molecules26216389> (2021)

13. Bhardwaj B., Singh P., Kumar A., Kumar S. and Budhwar V., Eco-Friendly Greener Synthesis of Nanoparticles, *Adv Pharm Bull*, **10(4)**, 566–576, <https://doi.org/10.34172/abp.2020.067> (2020)

14. Bitwell C., Indra S.S., Luke C. and Kakoma M.K., A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants, *Scientific African*, **19**, e01585, <https://doi.org/10.1016/j.sciaf.2023.e01585> (2023)

15. Boddapati L. and Deepak F.L., Scanning Transmission Electron Microscopy of Magnetic Nanoalloys and Their Nanocomposites, In *Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites*, Thomas S. and Rezazadeh Nochehdehi A., Eds., Springer International Publishing: Cham, 593–627, https://doi.org/10.1007/978-3-030-90948-2_39 (2022)

16. Castillo-Henríquez L., Alfaro-Aguilar K., Ugalde-Álvarez J., Vega-Fernández L., Montes de Oca-Vásquez G. and Vega-Baudrit J.R., Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area, *Nanomaterials*, **10(9)**, 1763, <https://doi.org/10.3390/nano10091763> (2020)

17. Chota A., George B.P. and Abrahamse H., Interactions of Multidomain Pro-Apoptotic and Anti-Apoptotic Proteins in Cancer Cell Death, *Oncotarget*, **12(16)**, 1615–1626, <https://doi.org/10.18632/oncotarget.28031> (2021)

18. Dai Y., Guo Y., Tang W., Chen D., Xue L., Chen Y., Guo Y., Wei S., Wu M., Dai J. and Wang S., Reactive Oxygen Species-Scavenging Nanomaterials for the Prevention and Treatment of Age-Related Diseases, *Journal of Nanobiotechnology*, **22(1)**, 252, <https://doi.org/10.1186/s12951-024-02501-9> (2024)

19. Dai X. and Shen L., Advances and Trends in Omics Technology Development, *Front Med (Lausanne)*, **9**, 911861, <https://doi.org/10.3389/fmed.2022.911861> (2022)

20. David M., Enache T.A., Barbu-Tudoran L., Bala C. and Florescu M., Biologically Synthesized Gold Nanoparticles with Enhanced Antioxidant and Catalytic Properties, *Pharmaceuticals*, **17(9)**, 1105, <https://doi.org/10.3390/ph17091105> (2024)

21. Fouad A., Hegazy A.E., Azab E., Khojah E. and Kapiel T., Boosting of Antioxidants and Alkaloids in Catharanthus Roseus Suspension Cultures Using Silver Nanoparticles with Expression of CrMPK3 and STR Genes, *Plants (Basel)*, **10(10)**, 2202, <https://doi.org/10.3390/plants10102202> (2021)

22. Goswami S., Ali A., Prasad M.E. and Singh P., Pharmacological Significance of *Catharanthus Roseus* in Cancer Management: A Review, *Pharmacological Research - Modern Chinese Medicine*, **11**, 100444, <https://doi.org/10.1016/j.prmcm.2024.100444> (2024)

23. Gumi M.N., Kanunfre C.C., Padilha J. de P., Cruz L.S. and Boscardin P.M.D., Silver Nanoparticles Green Synthesis from Catharanthus Roseus Flowers and Effect on A549 Lung Cancer Cells, *Braz. Arch. Biol. Technol.*, **66**, e23220989, <https://doi.org/10.1590/1678-4324-ssbfar-2023220989> (2023)

24. Guo Q., Jin Y., Chen X., Ye X., Shen X., Lin M., Zeng C., Zhou T. and Zhang J., NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications, *Sig Transduct Target Ther*, **9(1)**, 1–37, <https://doi.org/10.1038/s41392-024-01757-9> (2024)

25. Herdiana Y., Sriwidodo S., Sofian F.F., Wilar G. and Diantini A., Nanoparticle-Based Antioxidants in Stress Signaling and Programmed Cell Death in Breast Cancer Treatment, *Molecules*, **28(14)**, 5305, <https://doi.org/10.3390/molecules28145305> (2023)

26. Houldsworth A., Role of Oxidative Stress in Neurodegenerative Disorders: A Review of Reactive Oxygen

Species and Prevention by Antioxidants, *Brain Communications*, **6**(1), fcad356, <https://doi.org/10.1093/braincomms/fcad356> (2024)

27. Huang T., Li X., Maier M., O'Brien-Simpson N.M., Heath D.E. and O'Connor A.J., Using Inorganic Nanoparticles to Fight Fungal Infections in the Antimicrobial Resistant Era, *Acta Biomaterialia*, **158**, 56–79, <https://doi.org/10.1016/j.actbio.2023.01.019> (2023)

28. Hussein H.S., Ngugi C., Tolo F.M. and Maina E.N., Anticancer Potential of Silver Nanoparticles Biosynthesized Using *Catharanthus Roseus* Leaves Extract on Cervical (HeLa229) Cancer Cell Line, *Scientific African*, **25**, e02268, <https://doi.org/10.1016/j.sciaf.2024.e02268> (2024)

29. Jamil K., Khattak S.H., Farrukh A., Begum S., Riaz M.N., Muhammad A., Kamal T., Taj T., Khan I., Riaz S., Batoor H., Mandokhail K., Majeed S., Khan Bangash S.A., Mushtaq A., Bashir S., Kaleem I., Pervaiz F., Rasool A., Amanat M.A. and Ali G.M., Biogenic Synthesis of Silver Nanoparticles Using *Catharanthus Roseus* and Its Cytotoxicity Effect on Vero Cell Lines, *Molecules*, **27**(19), 6191, <https://doi.org/10.3390/molecules27196191> (2022)

30. Joshi R., Aithal S., More A., Nema V. and Mukherjee A., Exploring the Therapeutic Potential of Silver Nanocomposition of *Catharanthus Roseus* Leaves Extract for Antimicrobial and Antiviral Activities: A Pilot Study, *International Journal of Plant Based Pharmaceuticals*, **4**(2), 101–109, <https://doi.org/10.62313/ijpbp.2024.217> (2024)

31. Kandiah M. and Chandrasekaran K.N., Green Synthesis of Silver Nanoparticles Using *Catharanthus Roseus* Flower Extracts and the Determination of Their Antioxidant, Antimicrobial and Photocatalytic Activity, *Journal of Nanotechnology*, **5512786**, <https://doi.org/10.1155/2021/5512786> (2021)

32. Khan M.F. and Khan M.A., Plant-Derived Metal Nanoparticles (PDMNPs): Synthesis, Characterization and Oxidative Stress-Mediated Therapeutic Actions, *Future Pharmacology*, **3**(1), 252–295, <https://doi.org/10.3390/futurepharmacol3010018> (2023)

33. Kulkarni D., Sherkar R., Shirasathe C., Sonwane R., Varpe N., Shelke S., More M.P., Pardeshi S.R., Dhaneshwar G., Junnuthula V. and Dyawanapelly S., Biofabrication of Nanoparticles: Sources, Synthesis and Biomedical Applications, *Front. Bioeng. Biotechnol.*, <https://doi.org/10.3389/fbioe.2023.1159193> (2023)

34. Kumarasamy R.V., Natarajan P.M., Umapathy V.R., Roy J.R., Mironescu M. and Palanisamy C.P., Clinical Applications and Therapeutic Potentials of Advanced Nanoparticles: A Comprehensive Review on Completed Human Clinical Trials, *Front. Nanotechnol.*, <https://doi.org/10.3389/fnano.2024.1479993> (2024)

35. Kumraj G., Pathak S., Shah S., Majumder P., Jain J., Bhati D., Hanif S., Mukherjee S. and Ahmed S., Capacity Building for Vaccine Manufacturing Across Developing Countries: The Way Forward, *Hum. Vaccin. Immunother.*, **18**(1), 2020529, <https://doi.org/10.1080/21645515.2021.2020529> (2021)

36. Li C.H., Chan M.H., Chang Y.C. and Hsiao M., Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination, *Molecules*, **28**(1), <https://doi.org/10.3390/molecules28010364>, 364 (2023)

37. Malaiappan S. et al, Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using *Catharanthus Roseus* Extract: A Novel Approach, *Cureus*, **16**(5), e60407, <https://doi.org/10.7759/cureus.60407> (2024)

38. Malik S., Muhammad K. and Waheed Y., Nanotechnology: A Revolution in Modern Industry, *Molecules*, **28**(2), 661, <https://doi.org/10.3390/molecules28020661> (2023)

39. Mammari N., Lamouroux E., Boudier A. and Duval R.E., Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles, *Microorganisms*, **10**(2), 437, <https://doi.org/10.3390/microorganisms10020437> (2022)

40. Morgan R.N. and Aboshanab K.M., Green Biologically Synthesized Metal Nanoparticles: Biological Applications, Optimizations and Future Prospects, *Future Sci OA.*, **10**(1), FSO935, <https://doi.org/10.2144/fsoa-2023-0196> (2023)

41. Mukherjee S., Verma A., Kong L., Rengan A.K. and Cahill D.M., Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens, *Biomolecules*, **14**(9), 1082, <https://doi.org/10.3390/biom14091082> (2024)

42. Nagaraj P., Murugesan N. and Balakrishnan K., Biogenic Synthesis of Hematite (α -Fe₂O₃) and Ni Doped Hematite (α -Fe₂O₃) Nanoparticles for Enhanced *In Vitro* Cytotoxic Studies on MCF-7 Cell Lines, *Journal of the Indian Chemical Society*, **101**(10), 101273, <https://doi.org/10.1016/j.jics.2024.101273> (2024)

43. Nayal R., Mejjo D. and Abajy M.Y., Anti Inflammatory Properties and Safety of Green Synthesized Metal and Metal Oxide Nanoparticles: A Review Article, *European Journal of Medicinal Chemistry Reports*, **11**, 100169, <https://doi.org/10.1016/j.ejmcr.2024.100169> (2024)

44. Nguyen N.P.U., Dang N.T., Doan L. and Nguyen T.T.H., Synthesis of Silver Nanoparticles: From Conventional to 'Modern' Methods—A Review, *Processes*, **11**(9), 2617, <https://doi.org/10.3390/pr11092617> (2023)

45. Ou X., Wang H., Tie H., Liao J., Luo Y., Huang W., Yu R., Song L. and Zhu J., Novel Plant-Derived Exosome-like Nanovesicles from *Catharanthus Roseus*: Preparation, Characterization and Immunostimulatory Effect via TNF- α /NF- κ B/PU.1 Axis, *J Nanobiotechnology*, **21**, 160, <https://doi.org/10.1186/s12951-023-01919-x> (2023)

46. Pal D. and Lal P., Plants Showing Anti-Viral Activity with Emphasis on Secondary Metabolites and Biological Screening, In Anti-Viral Metabolites from Medicinal Plants, Pal D., ed., Springer International Publishing: Cham, 29–95, https://doi.org/10.1007/978-3-031-12199-9_2 (2024)

47. Pereira J.E., Moita A.S. and Moreira A.L.N., The Pressing Need for Green Nanofluids: A Review, *Journal of Environmental Chemical Engineering*, **10**(3), 107940, <https://doi.org/10.1016/j.jece.2022.107940> (2022)

48. Petrovic S., Bita B. and Barbinta-Patrascu M.E., Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives, *International Journal of*

Molecular Sciences, **25(11)**, 5842, [https://doi.org/10.3390/ijms25115842 \(2024\)](https://doi.org/10.3390/ijms25115842)

49. Plaskova A. and Mlcek J., New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food, *Front Nutr.*, **10**, 1118761, [https://doi.org/10.3389/fnut.2023.1118761 \(2023\)](https://doi.org/10.3389/fnut.2023.1118761)

50. Qamhieh K., Effect of Dielectric Constant on the Zeta Potential of Spherical Electric Double Layers, *Molecules*, **29(11)**, 2484, [https://doi.org/10.3390/molecules29112484 \(2024\)](https://doi.org/10.3390/molecules29112484)

51. Sajjad A., Bhatti S.H., Ali Z., Jaffari G.H., Khan N.A., Rizvi Z.F. and Zia M., Photoinduced Fabrication of Zinc Oxide Nanoparticles: Transformation of Morphological and Biological Response on Light Irradiance, *ACS Omega*, **6(17)**, 11783–11793, [https://doi.org/10.1021/acsomega.1c01512 \(2021\)](https://doi.org/10.1021/acsomega.1c01512)

52. Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., Silva A.M., Durazzo A., Santini A., Garcia M.L. and Souto E.B., Metal-Based Nanoparticles as Antimicrobial Agents: An Overview, *Nanomaterials*, **10(2)**, 292, [https://doi.org/10.3390/nano10020292 \(2020\)](https://doi.org/10.3390/nano10020292)

53. Sfera A., Akram M., Laila U., Zainab R., Iftikhar M., Abdelhak M., Sołowski G., Ozdemir F.A., Alinia-Ahandani E. and Sfera A., Phytochemistry and Phytochemical Potential of Catharanthus Roseus: A Narrative Review, *International Journal of Medical Science and Clinical Invention*, **10(4)**, 6670–6676, [https://doi.org/10.18535/ijmisci \(2023\)](https://doi.org/10.18535/ijmisci)

54. Shayo G.M., Elimbinzi E. and Shao G.N., Preparation Methods, Applications, Toxicity and Mechanisms of Silver Nanoparticles as Bactericidal Agent and Superiority of Green Synthesis Method, *Heliyon*, **10(17)**, e36539, [https://doi.org/10.1016/j.heliyon.2024.e36539 \(2024\)](https://doi.org/10.1016/j.heliyon.2024.e36539)

55. Shoudho K.N., Uddin S., Rumon M.M.H. and Shakil M.S., Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity, *ACS Omega*, **9(31)**, 33303–33334, [https://doi.org/10.1021/acsomega.4c02822 \(2024\)](https://doi.org/10.1021/acsomega.4c02822)

56. Sirelkhatim A., Mahmud S., Seenai A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H. and Mohamad D., Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, *Nanomicro Lett.*, **7(3)**, 219–242, [https://doi.org/10.1007/s40820-015-0040-x \(2015\)](https://doi.org/10.1007/s40820-015-0040-x)

57. Sorrenti V., Burò I., Consoli V. and Vanella L., Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects, *International Journal of Molecular Sciences*, **24(3)**, 2019, [https://doi.org/10.3390/ijms24032019 \(2023\)](https://doi.org/10.3390/ijms24032019)

58. Sultana Mst. J., Nibir A.I.S. and Ahmed F.R.S., Biosensing and Anti-Inflammatory Effects of Silver, Copper and Iron Nanoparticles from the Leaf Extract of Catharanthus Roseus, *Beni-Suef University Journal of Basic and Applied Sciences*, **12(1)**, 26, [https://doi.org/10.1186/s43088-023-00358-9 \(2023\)](https://doi.org/10.1186/s43088-023-00358-9)

59. Szczyglewska P., Felicak-Guzik A. and Nowak I., Nanotechnology—General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles, *Molecules*, **28(13)**, 4932, [https://doi.org/10.3390/molecules28134932 \(2023\)](https://doi.org/10.3390/molecules28134932)

60. Thatyana M., Dube N.P., Kemboi D., Manicum A.L.E., Mokgalaka-Fleischmann N.S. and Tembu J.V., Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Phyllanthus Plant Extracts and Their Antimicrobial and Anticancer Applications, *Nanomaterials*, **13(19)**, 2616, [https://doi.org/10.3390/nano13192616 \(2023\)](https://doi.org/10.3390/nano13192616)

61. Velgosova O., Dolinská S., Podolská H., Mačák L. and Čižmárová E., Impact of Plant Extract Phytochemicals on the Synthesis of Silver Nanoparticles, *Materials*, **17(10)**, 2252, [https://doi.org/10.3390/ma17102252 \(2024\)](https://doi.org/10.3390/ma17102252)

62. Yao Y., Zhou Y., Liu L., Xu Y., Chen Q., Wang Y., Wu S., Deng Y., Zhang J. and Shao A., Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance, *Front Mol Biosci*, **7**, [https://doi.org/10.3389/fmolb.2020.00193 \(2020\)](https://doi.org/10.3389/fmolb.2020.00193)

63. Yazdani S., Daneshkhah A., Diwate A., Patel H., Smith J., Reul O., Cheng R., Izadian A. and Hajrasouliha A.R., Model for Gold Nanoparticle Synthesis: Effect of pH and Reaction Time, *ACS Omega*, **6(26)**, [https://doi.org/10.1021/acsomega.1c01418, 16847–16853 \(2021\)](https://doi.org/10.1021/acsomega.1c01418)

64. Zuhrotun A., Oktaviani D.J. and Hasanah A.N., Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds, *Molecules*, **28(7)**, 3240, [https://doi.org/10.3390/molecules28073240 \(2023\)](https://doi.org/10.3390/molecules28073240)

(Received 05th February 2025, accepted 25th March 2025)